Nephrolithiasis: Molecular Mechanism of Renal Stone Formation and the Critical Role Played by Modulators

نویسندگان

  • Kanu Priya Aggarwal
  • Shifa Narula
  • Monica Kakkar
  • Chanderdeep Tandon
چکیده

Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a person's ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renal injury, nephrolithiasis and Nigella sativa: A mini review

Objective: The incidence and prevalence of kidney stone is increasing worldwide. After the first recurrence the risk of subsequent relapses is higher and the time period between relapses is shortened. Urinary stones can be severely painful and make a huge economic burden. The stone disease may increase the vulnerability of patients to other diseases such as renal failure. Medicinal herbs are ri...

متن کامل

Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: Inflammatory changes are mainly associated with crystal deposition

Hyperoxaluria associated with renal deposition of calcium oxalate (CaOx) crystals causes renal injury and inflammation leading to number of diseases including chronic kidney disease (CKD). It is however, not been possible to separate the renal consequences of hyperoxaluria from that of CaOx crystal deposition. We decided to utilize ethylene glycol (EG) model where hyperoxaluria and CaOx crystal...

متن کامل

Modulators of urinary stone formation.

Urine contains compounds that modulate the nucleation, growth and aggregation of crystals as well as their attachment to renal epithelial cells. These compounds may function to protect the kidneys against: 1, the possibility of crystallization in tubular fluid and urine, which are generally metastable with respect to calcium salts, 2, crystal retention within the kidneys thereby preventing ston...

متن کامل

Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations.

PURPOSE Idiopathic calcium oxalate kidney stones form while attached to Randall plaques, the subepithelial deposits on renal papillary surfaces. Plaque formation and growth mechanisms are poorly understood. Plaque formation elsewhere in the body is triggered by reactive oxygen species and oxidative stress. This review explores possible reactive oxygen species involvement in plaque formation and...

متن کامل

Mode of interaction of calcium oxalate crystal with human phosphate cytidylyltransferase 1: a novel inhibitor purified from human renal stone matrix

Nephrolithiasis is a common clinical disorder, and calcium oxalate (CaOx) is the principal crystalline component in approximately 75% of all renal stones. It is widely believed that proteins act as inhibitors of crystal growth and aggregation. Acidic amino acids present in these proteins play a significant role in the inhibition process. In this study, interaction of calcium oxalate with human ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013